Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae.

Identifieur interne : 001A92 ( Main/Exploration ); précédent : 001A91; suivant : 001A93

All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae.

Auteurs : K. Dolinski [États-Unis] ; S. Muir ; M. Cardenas ; J. Heitman

Source :

RBID : pubmed:9371805

Descripteurs français

English descriptors

Abstract

The cyclophilins and FK506 binding proteins (FKBPs) bind to cyclosporin A, FK506, and rapamycin and mediate their immunosuppressive and toxic effects, but the physiological functions of these proteins are largely unknown. Cyclophilins and FKBPs are ubiquitous and highly conserved enzymes that catalyze peptidyl-prolyl isomerization, a rate-limiting step during in vitro protein folding. We have addressed their functions by a genetic approach in the yeast Saccharomyces cerevisiae. Five cyclophilins and three FKBPs previously were identified in yeast. We identified four additional enzymes: Cpr6 and Cpr7, which are homologs of mammalian cyclophilin 40 that have also recently been independently isolated by others, Cpr8, a homolog of the secretory pathway cyclophilin Cpr4, and Fpr4, a homolog of the nucleolar FKBP, Fpr3. None of the eight cyclophilins or four FKBPs were essential. Surprisingly, yeast mutants lacking all 12 immunophilins were viable, and the phenotype of the dodecuplet mutant resulted from simple addition of the subtle phenotypes of each individual mutation. We conclude that cyclophilins and FKBPs do not play an essential general role in protein folding and find little evidence of functional overlap between the different enzymes. We propose that each cyclophilin and FKBP instead regulates a restricted number of unique partner proteins that remain to be identified.

DOI: 10.1073/pnas.94.24.13093
PubMed: 9371805
PubMed Central: PMC24268


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Dolinski, K" sort="Dolinski, K" uniqKey="Dolinski K" first="K" last="Dolinski">K. Dolinski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, Duke University Medical Center, Durham, NC 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Duke University Medical Center, Durham, NC 27710</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Muir, S" sort="Muir, S" uniqKey="Muir S" first="S" last="Muir">S. Muir</name>
</author>
<author>
<name sortKey="Cardenas, M" sort="Cardenas, M" uniqKey="Cardenas M" first="M" last="Cardenas">M. Cardenas</name>
</author>
<author>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1997">1997</date>
<idno type="RBID">pubmed:9371805</idno>
<idno type="pmid">9371805</idno>
<idno type="pmc">PMC24268</idno>
<idno type="doi">10.1073/pnas.94.24.13093</idno>
<idno type="wicri:Area/Main/Corpus">001A81</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A81</idno>
<idno type="wicri:Area/Main/Curation">001A81</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A81</idno>
<idno type="wicri:Area/Main/Exploration">001A81</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Dolinski, K" sort="Dolinski, K" uniqKey="Dolinski K" first="K" last="Dolinski">K. Dolinski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, Duke University Medical Center, Durham, NC 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Duke University Medical Center, Durham, NC 27710</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Muir, S" sort="Muir, S" uniqKey="Muir S" first="S" last="Muir">S. Muir</name>
</author>
<author>
<name sortKey="Cardenas, M" sort="Cardenas, M" uniqKey="Cardenas M" first="M" last="Cardenas">M. Cardenas</name>
</author>
<author>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="1997" type="published">1997</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>DNA-Binding Proteins (chemistry)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Heat-Shock Proteins (chemistry)</term>
<term>Heat-Shock Proteins (genetics)</term>
<term>Heat-Shock Response (MeSH)</term>
<term>Histone Chaperones (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Peptidylprolyl Isomerase (genetics)</term>
<term>Saccharomyces cerevisiae (chemistry)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Tacrolimus Binding Proteins (chemistry)</term>
<term>Tacrolimus Binding Proteins (genetics)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chaperons d'histones (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Peptidylpropyl isomerase (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de liaison au tacrolimus (composition chimique)</term>
<term>Protéines de liaison au tacrolimus (génétique)</term>
<term>Protéines de liaison à l'ADN (composition chimique)</term>
<term>Protéines de liaison à l'ADN (génétique)</term>
<term>Protéines du choc thermique (composition chimique)</term>
<term>Protéines du choc thermique (génétique)</term>
<term>Réaction de choc thermique (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (composition chimique)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Heat-Shock Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Tacrolimus Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Heat-Shock Proteins</term>
<term>Peptidylprolyl Isomerase</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Tacrolimus Binding Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison au tacrolimus</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines du choc thermique</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Peptidylpropyl isomerase</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison au tacrolimus</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines du choc thermique</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Conserved Sequence</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Heat-Shock Response</term>
<term>Histone Chaperones</term>
<term>Molecular Sequence Data</term>
<term>Sequence Homology, Amino Acid</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chaperons d'histones</term>
<term>Données de séquences moléculaires</term>
<term>Réaction de choc thermique</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The cyclophilins and FK506 binding proteins (FKBPs) bind to cyclosporin A, FK506, and rapamycin and mediate their immunosuppressive and toxic effects, but the physiological functions of these proteins are largely unknown. Cyclophilins and FKBPs are ubiquitous and highly conserved enzymes that catalyze peptidyl-prolyl isomerization, a rate-limiting step during in vitro protein folding. We have addressed their functions by a genetic approach in the yeast Saccharomyces cerevisiae. Five cyclophilins and three FKBPs previously were identified in yeast. We identified four additional enzymes: Cpr6 and Cpr7, which are homologs of mammalian cyclophilin 40 that have also recently been independently isolated by others, Cpr8, a homolog of the secretory pathway cyclophilin Cpr4, and Fpr4, a homolog of the nucleolar FKBP, Fpr3. None of the eight cyclophilins or four FKBPs were essential. Surprisingly, yeast mutants lacking all 12 immunophilins were viable, and the phenotype of the dodecuplet mutant resulted from simple addition of the subtle phenotypes of each individual mutation. We conclude that cyclophilins and FKBPs do not play an essential general role in protein folding and find little evidence of functional overlap between the different enzymes. We propose that each cyclophilin and FKBP instead regulates a restricted number of unique partner proteins that remain to be identified.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9371805</PMID>
<DateCompleted>
<Year>1998</Year>
<Month>01</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>94</Volume>
<Issue>24</Issue>
<PubDate>
<Year>1997</Year>
<Month>Nov</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>13093-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The cyclophilins and FK506 binding proteins (FKBPs) bind to cyclosporin A, FK506, and rapamycin and mediate their immunosuppressive and toxic effects, but the physiological functions of these proteins are largely unknown. Cyclophilins and FKBPs are ubiquitous and highly conserved enzymes that catalyze peptidyl-prolyl isomerization, a rate-limiting step during in vitro protein folding. We have addressed their functions by a genetic approach in the yeast Saccharomyces cerevisiae. Five cyclophilins and three FKBPs previously were identified in yeast. We identified four additional enzymes: Cpr6 and Cpr7, which are homologs of mammalian cyclophilin 40 that have also recently been independently isolated by others, Cpr8, a homolog of the secretory pathway cyclophilin Cpr4, and Fpr4, a homolog of the nucleolar FKBP, Fpr3. None of the eight cyclophilins or four FKBPs were essential. Surprisingly, yeast mutants lacking all 12 immunophilins were viable, and the phenotype of the dodecuplet mutant resulted from simple addition of the subtle phenotypes of each individual mutation. We conclude that cyclophilins and FKBPs do not play an essential general role in protein folding and find little evidence of functional overlap between the different enzymes. We propose that each cyclophilin and FKBP instead regulates a restricted number of unique partner proteins that remain to be identified.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dolinski</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Duke University Medical Center, Durham, NC 27710, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muir</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cardenas</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Heitman</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 HL50985-01</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006360">Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056488">Histone Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.2.1.-</RegistryNumber>
<NameOfSubstance UI="D022021">Tacrolimus Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.2.1.8</RegistryNumber>
<NameOfSubstance UI="C513494">Fpr4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.2.1.8</RegistryNumber>
<NameOfSubstance UI="D019696">Peptidylprolyl Isomerase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006360" MajorTopicYN="N">Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018869" MajorTopicYN="N">Heat-Shock Response</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056488" MajorTopicYN="N">Histone Chaperones</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019696" MajorTopicYN="N">Peptidylprolyl Isomerase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022021" MajorTopicYN="N">Tacrolimus Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1997</Year>
<Month>12</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1997</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1997</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9371805</ArticleId>
<ArticleId IdType="pmc">PMC24268</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.94.24.13093</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 1992 Apr 17;69(2):353-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1568250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Sep 19;352(1):98-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7925954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Dec 6;274(5293):1718-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8939864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Mar 25;20(6):1425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1561104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Mar;71(3):2107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9032343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 15;268(17):12303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8509368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jan 6;270(1):244-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7814381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Mar 15;267(8):5503-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1544925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1991 Dec;7(9):971-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1803821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1984 Nov 2;226(4674):544-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6238408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 1997 May;378(5):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9191025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 May;122(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Mar;11(3):1718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1996117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Dec 21-28;342(6252):953-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2531848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Mar 2;338(6210):67-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2493138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Feb 15;15(4):764-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8631298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1996 Aug;12(10):939-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8873447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Nov 5;268(31):22992-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7693682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Biol. 1992 May;4(5):448-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1515410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Mar 25;18(6):1643</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2183199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Oct 18;67(2):255-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1913822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Oct 17;13(20):4886-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7957056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 May 20;77(4):513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7514503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 25;268(18):13187-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8514757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11169-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1454795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1029-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1704127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Aug 27;74(4):743-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8358794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Jun;70(6):3536-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8648687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1705713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6319-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7603990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Nov 15;83(1):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2687115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Dec 6;274(5293):1715-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8939863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Feb 2;337(6206):473-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2644542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Aug;126(4):853-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8051210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Dec 6;274(5293):1713-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8939862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1996 Aug;12(10):943-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8873448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Sep 5;233(1):183-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8377189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Aug 2;271(31):18527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8702500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7471-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1380159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1784-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7533300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Nov 24;372(6504):363-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7969495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1992 Feb 1;111(1):85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1547957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5853-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7685914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 May 29;365(2-3):198-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7781779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem. 1993;44:25-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8317297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Dec 15;13(24):5944-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7529175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5372-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7515500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1990 Jun;110(6):1885-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2190988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 May 26;158(1):113-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7789793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Jun 18;73(6):1067-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8513493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 May 25;18(10):3091-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2190191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Aug 19;241(4868):965-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3043665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Apr 19;65(2):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1707759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Sep 30;265(5181):2077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8091229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Mar 15;263(8):3990-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3346233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 May 7;357(6373):38-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1574125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Feb 2;337(6206):476-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2492638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 May 15;267(14):9474-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1374404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Sep 26;352(2):180-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7925971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7685904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Jul;86(14):5390-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2664782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Jun 30;57(7):1211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2661018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Oct 7;269(40):24983-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7929182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Nov;127(3):623-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7525596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Nov 3;83(3):463-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8521476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 Apr 11;380(6574):544-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8606777</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Cardenas, M" sort="Cardenas, M" uniqKey="Cardenas M" first="M" last="Cardenas">M. Cardenas</name>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
<name sortKey="Muir, S" sort="Muir, S" uniqKey="Muir S" first="S" last="Muir">S. Muir</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Dolinski, K" sort="Dolinski, K" uniqKey="Dolinski K" first="K" last="Dolinski">K. Dolinski</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9371805
   |texte=   All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9371805" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020